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Abstract

I present a portfolio allocation model that combines a data-based approach with
macroeconomic considerations of the business cycle. The model accounts for the two
key features of business cycles, namely co-movement among macroeconomic variables
and asymmetric development of the cycles. The joint treatment of these characteristics
improves the ability of the model to time market turns. The ensuing regime-dependent
probability distributions of returns account for more extreme behaviors in bear markets,
and hence more accurately describe non-linear downside and skewness risks. The model
has a numerical solution which can be applied recursively in order to optimize the
portfolio selection, accounting for market turns. This quantitative method leads to
enhanced portfolio gains.
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1 Introduction

Macro hedge funds are a type of sophisticated investor who tries to generate positive
alpha on the bases of predictability induced by macroeconomic indicators. They ex-
press their views by entering various long and short positions in different asset classes,
including equities. The main type of skill required to be successful within this asset
class is market timing, hence it is crucial for them to be able to time market turns
on the bases of macroeconomic analysis. Looking at the HFRI Macro index, which
summarizes the performance of macro hedge funds, it can be shown that in the last
two big recessions this type of fund outperformed other hedge fund types both in terms
of higher excess return and lower volatility. Additionally, if computing the correlation
between the returns on the macro hedge fund index and the returns on different stock
indexes, it can be shown that in recessions this correlation is negative. These results are
even more pronounced when looking at quantitative macro hedge funds. This evidence
suggests that it should be possible, through the analysis of macroeconomic indicators,
to outperform the market in recessions by obtaining early on a more accurate estimate
of market turns.

The work presented in this Chapter is motivated by the behavior of quantitative
macro hedge funds and tries to exploit the characteristics of the business cycle within
a factor model in order to optimize asset allocation and improve portfolio performance.
The model has a numerical solution which can be applied recursively in order to optimize
the portfolio selection.

More specifically, I solve the portfolio allocation problem of a quantitative investor
who assumes returns to follow a multi-factor model and utilizes information on how
these factors jointly behave across financial cycles in order to improve his timing abil-
ity. Here the growth rate of financial market is assumed to be a latent variable jointly
determined by the co-movement among factors within phases of the cycle and their
markov-switching behavior. Hence, the procedure proposed includes both character-
istics of business cycles as defined by Burns and Mitchell 1946: co-movement among
macroeconomic variables within the cycles and asymmetric development of the cycles
themselves. As shown by Kim and Nelson 1998, including both characteristics within
the same model improves the timing of market turns. Additionally the quantitative
estimation procedure allows to consider a large number of assets and account simulta-
neously for estimation uncertainty, mispricing uncertainty and structural instability.

The proposed model is able to provide a significantly more accurate estimation of
bull and bear markets (from 74% to 94% accuracy as compared to a Markov-switching
model without co-movement). This allows generating regime-dependent probability
distributions of returns that account for more extreme behaviors in bear markets, hence
better accounting for non-linear downside and skewness risks. Ultimately this leads to
higher portfolio gains both in-sample and out-of-sample and finally it allows to better
time market turns. Failing to include co-movement determines a less precise estimation
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of regimes and has a significant economic impact on the portfolio decision.
The rest of the paper is organized as follows. Section 2 reviews the related literature.

Section 3 illustrates the methodology used to solve and estimate the model. Section 4
describes the data to which the model is applied. Section 5 illustrates the results
obtained. Section 6 concludes. Appendix ?? features details regarding the model’s
derivation and estimation.

2 Related Literature

2.1 Classical vs Bayesian portfolio selection

Within the classical portfolio optimization framework, the parameters that dominate
the probability distribution of returns are considered as given and a point estimate of
such parameters is used as a proxy for the true ones. This type of portfolio optimization
ignores parameter uncertainty and its impact on the chosen optimal weights. A way to
account for parameter uncertainty in the portfolio optimization problem is by using a
Bayesian framework where portfolio weights are jointly estimated with the parameters of
the return distribution. Bayesian portfolio optimization consists in solving the following
problem:

maxω

∫
U(Wt+1)p(rt+1|Φ)drt+1 (2.1)

Where p(rt+1|Φ) ∝
∫

p(rt+1|θ, Φ)p(θ)L(θ, Φ)dθ is the predictive density, θ represents
the parameters of the probability distribution of returns ,Φ indicates all available in-
formation , U(.) is the chosen utility function, ω are the portfolio weights and Wt+1

represents wealth at time (t + 1)
The Bayesian portfolio optimization problem as defined above was first introduced

and studied by Bawa and Klein 1976. The use of the posterior distribution of θ accounts
for parameter uncertainty and allows incorporating prior information regarding the
probability distribution of returns, which can come from fundamental information, asset
pricing models, equilibrium relationships, forecasting models or other subjective views.
Among the others, this approach is used by Black and Litterman 1992, Pastor 2000
and Pastor and Stambaugh 2001. The latter combine asset pricing theory with a data-
based approach by centering the portfolio optimization problem on known asset pricing
models and developing a prior for the model parameters that reflected the degree of
uncertainty in the model’s pricing abilities.

The model proposed in this Chapter is developed into a Bayesian setting since this
provides an immediate way to account for parameter uncertainty and estimation error.
Additionally the approach developed by Pastor 2000 is used in order to incorporate into
the decision process the uncertainty relative to the pricing ability of the chosen model.
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2.2 Evidence of regime-switches in macroeconomic variables and
its impact on the probability distribution of returns

There exists substantial evidence that many macroeconomic variables and subsequently
asset returns follow a regime-switching process which has usually been associated with
business cycle dynamics. Ang and Bekaert 2002a, Ang and Bekaert 2002b , Ang and
Chen 2002, Guidolin and Timmermann 2006 and Guidolin and Timmermann 2007,
among others, study the impact of regime-switching on stock returns and portfolio
selection, finding significant evidence in favor of regime-switches. These studies suggests
that the dynamic character of the environment should be taken into account as a source
of uncertainty within portfolio optimization problems.

Guidolin and Timmermann 2007 apply Kim’s approximation of the Hamilton filter
to study the effect of regime switches in stock returns on the optimal asset allocation.
They find that the optimal allocation with and without regime switching is significantly
different in statistical and economical terms. Under the regime switching scenario in-
vestors vary their portfolio allocation considerably as they update their estimate of the
state probabilities. The chosen estimation method, though, only accounts for one of
the sources of uncertainty, structural uncertainty, whereas parameter uncertainty and
mispricing uncertainty are ignored. Additionally they do not take into consideration
co-movement among factors within the different regimes.

Tu 2010 develops a model that accounts simultaneously for parameter, mispricing
and structural uncertainty and applies it to portfolio selection. The treatment of mis-
pricing uncertainty and the portfolio selection problem are in line with Pastor 2000.
Tu 2010 solves a Markov-switching factor model through Gibbs sampling which allows
to solve the model for a large number of assets and readily obtain the posterior and
predictive distributions of returns. He does not account for the co-movement among
factors within cycles either, instead he assumes uninformative priors for the probability
distribution of the factors and a normally distributed likelihood.

The model proposed adds to the literature by including a more informative structure
for the probability distribution of the factors, which stresses the importance of co-
movements among variables within regimes. The state of the economy is driven by a
latent regime-switching variable and is determined by the co-movements within factors
as opposed to being estimated within the asset pricing equation. This is obtained by
nesting the returns equation within a state-space structure, whose latent variable is
the state-switching growth of the financial market. The two dynamic processes feed
into each and are jointly estimated through Gibbs sampling. This procedure provide
better estimates of market turns and consequently has a positive impact on portfolio
performance, especially during recessions.
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3 Methodology

3.1 Portfolio optimization problem

Let’s consider a risk averse investor with a one period investment horizon who has to
choose a portfolio allocation in order to maximize the expected utility of next period’s
wealth. He can invest in (n + k) risky assets, n non-benchmark assets and the k bench-
mark assets (factors), and on the risk-less rate (r f ). Define Wt as the current period’s
wealth, π as the percentage of wealth invested in the risk-less asset and ω as the vector
of weights invested in the risky assets (in excess of the risk-less rate).

Then the wealth at time (t + 1) will be given by:

Wt+1 = Wt(1 + r f + (1− π)(ω′rt+1) (3.1)

In line with equation (1), the investor will chose ω to maximize the expected utility
of next period’s wealth by solving the following optimization problem:

maxω

∫
U(Wt+1)p(Rt+1|Φ)dRt+1 = (3.2)

= maxω

∫ ∫
U(Wt+1)p(Rt+1|θ, Φ)p(θ)L(θ, Φ)dθdRt+1

= maxω

∫
U(Wt+1) [

∫
p(Rt+1|θ, Φ)p(θ|Φ)dθ] dRt+1

Where: p(Rt+1|Φ) =
∫

p(Rt+1|θ, Φ)p(θ|Φ)dθ is the predictive distribution of re-
turns

The methodology developed below allows to obtain the whole predictive distribu-
tion of returns p(Rt+1|Φ), hence to solve the problem for different types of utility
functions. In line with Pastor 2000 and Tu 2010, let’s first consider a mean-variance
investor, whose optimal allocation only depends on the first two moments of the pre-
dictive distribution of returns. The optimal mean-variance allocation involves investing
a percentage of wealth on the risk-less asset and a percentage on the tangent portfolio,
the exact allocation depends on the degree of risk aversion of the investor.

The mean variance investor has to solve the following optimization problem:

maxω

(
ω′E[Rt+1|Φ]− γ

2
ω′V[Rt+1|Φ]ω

)
(3.3)

Where γ is the coefficient of risk aversion, E[Rt+1|Φ] is the expected value of the
predictive distribution and V[Rt+1|Φ] is the variance of the predictive distribution.

The weights invested in the risky assets are independent of the level of risk aversion
and are given by:

ω∗ =
1
γ
{V[RT+1|ΦT ]}−1 E[RT+1|ΦT ] (3.4)
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3.2 State-Switching Factor Model

This session defines the distribution of returns within the context of a Markov-switching
factor model and illustrates how to solve for the first two moments of the predictive
distribution of returns, which are necessary to solve the portfolio optimization problem
just illustrated.

Define F as a matrix of factors of dimensions (T × k) where k is the number of
factors taken into consideration and T is the total number of periods. Now define R as
a matrix of asset returns in excess of the risk-free rate of dimensions (T × n), where n
is the total number of available risky assets.

Returns are assumed to follow the factor structure below:

ri,t = αs
i + βs

i fi,t + us
i,t (3.5)

us
i,t ∼ iidN(0, σ2

i,s) (3.6)

For i = 1...n and s = 1...S. The above factor model can also be expressed in matrix
notation as: R = XAs + Us, where R is a (T × n) matrix containing the returns on
the n assets, X = [ιT F] is a (T × (k + 1)) matrix, where ιT is a T-dimensional vector
of ones. As = [αsBs]′ is a matrix of dimensions ((k + 1)× n) containing all regression
coefficients, where Bs is a matrix of dimensions (k× n) containing the betas relative to
the n regressions and αs is a vector of dimensions (1× n) containing the alphas of the
n regressions. Finally Us is a (T× n) matrix containing the error terms relative to the
n regressions, such that: U ∼ iidN(0, Σs ⊗ IT) and Σs is a (n× n) diagonal matrix.

The model above is state switching, hence all main parameters will be different
conditional on the state of the economy, making it a non-linear specification. It is useful
to think about this problem in the context of model uncertainty. In fact, conditional on
the state, the above specification can be rewritten as a linear Gaussian regression model;
we have as many of these models as the number of states of the world (S). Thinking
about the problem in this manner greatly simplifies estimation, as most calculations
can be done within the context of a linear Gaussian model.

What differentiates this specification from the more classical regime-switching mod-
els is that the regime is implicitly derived from the factor structure, in order to account
for the co-movement among variables within business cycles and the asymmetric evolu-
tion of the cycles themselves. The state-space Markov-switching part below is similar
to that of Kim and Nelson 1999, Chapter 10, but it is adapted in order to allow for both
the mean and the volatility of the latent regime-switching process to be state dependent.

fi,t = ρi + ζi(L)∆Ct + ei,t (3.7)

ηi(L)eit = εit (3.8)
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εit ∼ iidN(0, v2
i ) (3.9)

λ(L)(∆Ct − µs
t − δ) = wt (3.10)

wt ∼ iidN(0, σ2
c,st) (3.11)

µs
t = µ0 + µs

1st (3.12)

σ2
c,st = σ2

c,0(1− st) + σ2
c,1st = σ2

c,0(1 + h1st) (3.13)

P[st = 1|st−1 = 1] = p (3.14)

P[st = 0|st−1 = 0] = q (3.15)

Where fi,t represents the ith indicator, ∆Ct is the growth rate of the financial market,
µ1 > 0, h1 > −1 and s = 1, ..., S and the state probabilities follow a Markov chain.

Assuming that there are only two states of the world and limiting the auto-regressive
processes to two lags the model can be simplified. After a few transformations, it can
be shown that the model above can be represented with the following matrix notation,
which translates into a state-space model (see Appendix .2 for details).

F∗∗t = Πξt + υt (3.16)

ξt = Mst + Λξt−1 + κt (3.17)

Equation (3.16) is the measurement equation of the Markov-switching model, while
equation (3.17) is the transition equation. The above system of equations would gen-
erally be solved with a Kalman filter. In this case, though, this simple solution is not
possible because both the state of the economy and the latent factor are unknown and
need to be estimated jointly with the rest of the parameters of the model.

Equations (3.5) - (3.6) together with equations (3.7) - (3.15) constitute the full model
that needs to be solved. Due to the estimation issues described above Gibbs sampling
is used. This allows to derive the full empirical joint distribution of a set of variables
given their conditional distributions.

In order to solve the model we need the joint posterior distribution of the latent
regime-switching variable, the state of the economy, the factors, the asset returns and all
parameters of the model. This information provides us with the predictive distribution
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of returns whose first two moments, E[Rt+1|ΦT ] and V[Rt+1|ΦT ], are necessary to solve
the portfolio allocation problem. The reminder of this Section derives the conditional
posterior distributions of all elements of the model and Section 3.3 describes how to
use the Gibbs sampler to obtain the predictive distribution of returns, while detailed
derivations can be found in Appendix ??.

3.2.1 The business cycle latent variable

From the transformed model, we can derive the business cycle latent variable ∆c̃T =

[∆c1...∆cT ] conditional on all available data ( f̃T = [ f ∗1 ... f ∗T ]), all parameters of the model
and the state of the economy. Note that the history of the asset returns doesn’t add
any information for the derivation of the business cycle variable, once the history of the
factors is known. Hence it won’t be needed to condition on the distribution of returns
in this case. The business cycle latent variable can be obtained through a Kalman filter
procedure. It is possible to use a Kalman filter because, conditional on the state of the
economy and all parameters, the model is linear Gaussian.

The matrix to be estimated is ξ̃T = [ξ1...ξT ]
′; all elements can be estimated simul-

taneously from the following joint distribution: p(ξ̃T | f̃T). Given that the conditional
state-space model is Gaussian also the distributions of ξT and ξt will be Gaussian, such
that:

ξT | f̃T ∼ N(ET [ξT ], ET [PT ]) (3.18)

ξt|ξt+1, f̃t ∼ N(Et[ξt|ξt+1], Et[Pt|ξt+1]) (3.19)

Where Pt indicates the covariance of ξt for t = 1, ..., T and Et[.] = E[.| f̃t]. The first
element of each vector ξt, ξt(1), gives us an estimate for ∆ct, for t = 1, ..., T.

3.2.2 The parameters of the k factor equations

Next we need to derive the posterior distribution of the parameters relative to the k
factor equations described in equation (.19), (ζi, ηi, v2

i ), conditional on all available data,
the business cycle latent variable just estimated and the state of the economy. Also in
this case the history of asset returns doesn’t add any additional information, hence we
won’t be conditioning on it. This assumes conditional independence such that:

p(R, F|θ, s̃T , ∆c̃T , ζ, η̃)) = (3.20)

= p(R, F|X, Σ, E[F], V[F], s̃T , ∆c̃T , ζ, η̃)

= p(R|X, Σ, E[F], V[F], s̃T)p(F|∆c̃T , s̃T , ζ, η̃)p(s̃T |∆c̃T)

Also in this case the conditional distributions of the parameters can be easily ob-
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tained through Bayesian updating of Gaussian distributions. In fact, conditional on ∆c̃T

and st this represents a simple system of k equations with uncorrelated disturbances, as
illustrated in the equations below.

f ∗i,t = ζi∆ct + ei,t (3.21)

ηi(L)eit = εit (3.22)

εit ∼ iidN(0, v2
i ) (3.23)

By assuming a Normal prior for ζi and ηi and an Inverted Gamma prior for v2
i , the

posterior conditional distribution of the parameters is:

ζi|η̃i, vi, ∆c̃T , f̃T ∼ N (γ̄i, Γ̄i) (3.24)

η̃i|ζ, vi, ∆c̃T , f̃T ∼ N
(
γ̄∗i , Γ̄∗i

)
(3.25)

v2
i |ζi, η̃i,∆c̃T , f̃T ∼ IG

(
ji + (T − 2)

2
,

zi + (ẽiT − Eiη̃i)
′ (ẽiT − Eiη̃i)

2

)
(3.26)

3.2.3 The state of the economy and related parameters

We also need to derive the joint posterior distribution for the state of the economy and
all its related parameters (st, λ1, λ2, µ0, µ1, σ2

c,0, σ2
c,1, p, q), conditional on all available

information, (R, F, , ∆ ˜cT), and all other model parameters just estimated. The history
of the factors , the asset returns and the other parameters of the system don’t add any
information beyond that contained in ∆c̃T so conditioning on them is not necessary.
Hence the model to be considered in this session is simply an auto-regressive model
with Markov switching mean and variance. This is represented by the equations below:

∆ct = λ1∆ct−1 + λ2∆ct−2 + µs,t − λ1µs,t−1 − λ2µs,t−2 + wt (3.27)

wt ∼ iidN(0, σ2
c,st) (3.28)

µs
t = µ0 + µs

1st (3.29)

σ2
c,s = σ2

c,0(1− st) + σ2
c,1st = σ2

0 (1 + h1st) (3.30)
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P[st = 1|st−1 = 1] = p (3.31)

P[st = 0|st−1 = 0] = q (3.32)

The joint posterior distribution to be estimated is the following:

p(s̃T , λ̃,µ0, µ1, σ2
c,0, σ2

c,1, p, q) = p(λ̃,µ0, µ1, σ2
c,0, σ2

c,1|∆c̃T)p(p, q|s̃T)p(s̃T |∆c̃T) (3.33)

The posterior distribution is obtained in three steps: first the state is computed
from p(s̃T |∆c̃T), then the transition probabilities are drawn from p(p, q|s̃T) and finally
the other parameters are extracted from p(λ̃,µ0, µ1, σ2

c,0, σ2
c,1|∆c̃T). The procedure for

obtaining p(s̃T |∆c̃T) is very similar to that already detailed for the estimation of ∆c̃T.
Normal prior distributions are assumed for λ̃,µ0, µ1, while Inverted Gamma priors are
assumed for σ2

c,0, σ2
c,1. The Bayesian updating yields the following posterior distributions:

p(s̃T |∆c̃T) = p(sT |∆c̃T)
T−1

∏
t=1

p(st|st+1, ∆c̃t) (3.34)

p|s̃T ∼ beta(o1,1 + n1,1, o1,0 + n1,0) (3.35)

q|s̃T ∼ beta(o0,0 + n0,0, o0,1 + n0,1) (3.36)

µ̃|λ̃, σ2
c,0, σ2

c,1, s̃T , ∆c̃T ∼ N(b1, B1) (3.37)

σ2
c,0|h1, µ̃, λ̃,s̃T , ∆c̃T ∼ IG

(
v1

2
,

δ1

2

)
(3.38)

h̄1 = (1 + h1)|σ2
c,0, µ̃, λ̃, s̃T , ∆c̃T ∼ IG

(
v11

2
,

δ11

2

)
(3.39)

σ2
c,1 = σ2

c,0h̄1 (3.40)

3.2.4 Parameters of the return factor model

Prior:
Conditional on the state of the economy, the history of the factors, ∆c̃T and all

model parameters, in order to estimate the parameters of the factor model it is required
to define the prior distribution on the following set of parameters: θ = {αs, Bs, Σs}.
Note that once the probability distribution of the factors and the state of the economy
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are known, ∆c̃T doesn’t add any information, hence it won’t be necessary to condition
on it.

The prior on α is of particular relevance as it allows to account for mispricing un-
certainty, as defined by Pastor and Stambaugh 1999. If having a dogmatic belief on the
pricing ability of the chosen model, on average we would expect α to be zero, most tests
of asset pricing models use this identity for hypothesis testing. We are aware, though,
that, according to hypothesis testing, most models should be rejected, including the
most commonly used asset pricing models such as the CAPM. The alternative to using
asset pricing models is to use a data-based approach by limiting estimations to historical
averages but this approach highly reduces the information set. So Pastor and Stam-
baugh 1999 proposed an alternative treatment of the problem by which, through the
prior on α we can introduce a subjective degree of uncertainty on the level of mispric-
ing of the model, with the consequence that posterior estimates of the parameter will
are weighted average of the parameters implied by the asset pricing model and those
implied by historical means, using as weighs their relative precision. Such mispricing is
introduced through the prior volatility of α. Following Pastor and Stambaugh 1999 we
then define the prior distribution of α as:

p(αs|Σs) ∼ N

(
0,

(
σ2

α
1

(ss)2 Σs

))
(3.41)

Where σ2
α identifies the degree of mispricing uncertainty that can be let vary from

0, representing a dogmatic belief in the model, to ∞ representing the case of complete
disbelief. Note that the prior belief could also be made state dependent by allowing
for a different level of mispricing uncertainty conditional on the state of the econ-
omy, by introducing (σs

α)
2. E[Σs] = (ss)2 ιN is the prior expectation of Σs, (ss)2 =

tr
[
(Rs − Xs Âs)′(Rs − Xs Âs)/Ts] /(n + k). As pointed out by Pastor and Stambaugh

1999 the prior variance of α is proportional to the variance of the regression residuals as
otherwise, through portfolio optimization, it would be possible to obtain extremely high
Sharpe Ratios. The reasons behind this phenomenon are exposed in detail in MacKinlay
1995.

From which the prior distribution of all regression parameters is defined as:

As|Σs ∼ N(Ās, Ψ(Σs)) (3.42)

Ψ(Σs) =

[
σ2

α
1
s2 Σs 0
0 Ωs

]
(3.43)

(Σs)−1 ∼W
(
(Hs)−1 , ν

)
(3.44)

Where Ωs is a diagonal matrix with very large diagonal elements, in order to assure
a diffuse prior for betas. It is also independent from Σ, Ās represents the prior mean of
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the regression parameters. The prior mean of the α coefficients is set to zero, whereas
the prior mean of the β coefficients is set to their historical average. W

(
(Hs)−1 , ν

)
is a Wishart distribution with H parameter matrix and ν degrees of freedom, while
(Hs)−1 = (ss)2 (ν− n + k− 1)ιn+k.

The joint prior on the regression parameters, conditional on the state of the economy,
can be written as:

p(As, Σs) = p(As|Σs)p(Σs) = p(αs|Σs)p(Σs)p(Bs) (3.45)

The equality p(As|Σs)p(Σs) = p(αs|Σs)p(Σs)p(Bs) is only possible because of how
the matrix Ψ(Σs) is defined - αs and Bs are independent and the variance of Bs is
independent from Σs.

The joint prior for the regression parameters can be rewritten as a function of only
(as, Σs), where as = vec(As).

The joint prior on all parameters, conditional on the state, can be defined as:

p′(θs) = p(αs|Σs)p(Σs)p(Bs) (3.46)

Likelihood:
Conditional on the state of the economy and the factors, the joint likelihood of the

asset returns can be defined as follows:

p(Rs|As, Σs) ∼ MVN(Xs As, Σs) ∝ |Σs|−
Ts
2 exp

{
−1

2
tr
[
(Rs − Xs As)′(Rs − Xs As) (Σs)−1

]}
(3.47)

∝ |Σs|− Ts
2 exp{− 1

2 tr
[
(Rs − Xs Âs)′(Rs − X ˆs As) (Σs)−1

]
+ (3.48)

− 1
2 tr
[
(As − Âs)

′
(Xs)′(Xs)(As − Âs) (Σs)−1

]
}

∝ |Σs|− Ts
2 exp

{
− Ts

2 tr
[
Σ̂s (Σs)−1

]
− 1

2 tr
[
(as − âs)′

(
(Σs)−1 ⊗ (Xs)′(Xs)

) (
as − âs

)]}
Where MVN stands for Multivariate Normal distribution, tr(.) computes the trace

of a matrix, Σ̂s = 1
T (Rs − Xs Âs)(Rs − X ˆs As)′, Âs = (Xs′Xv)−1Xs′Rs, as = vec(As).

Posterior:
The posterior on the regression parameters, conditional on the state of the economy,

is obtained as the product of the prior and the likelihood on the regression parameters
presented in equations (.116) and (3.48), such that:

p(θs|Rs) = p(Rs|θs)p′(θs) (3.49)

The solution yields the following probability distributions for the regression param-
eters, as following Tu 2010:
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((Σs)−1 |Rs, Fs) ∼W
(
(Ts + ν− k), (Hs + TΣ̂s + Âs ′ Js Âs)−1

)
(3.50)

(as| (Σs)−1 , Rs, Fs) ∼ N
(

ãs,
(

Σs ⊗ (Gs)−1
))

(3.51)

3.3 Joint estimation through Gibbs sampling

The Gibbs sampler allows to draw from a joint distribution by iteratively drawing
samples form the conditional distributions of the parameters involved. In this case the
steps to be followed are:

1. Draw ∆ctfrom the following distribution

∆ct|∆ct+1, f̃t ∼ N(Et[ξt|∆ct+1](1), Et[Pt|∆ct+1](1, 1))

2. Draw the parameters relative to the factors equations from their respective distri-
butions:

ζi|η̃i, vi, ∆c̃T , f̃T ∼ N (τ̄i, Γ̄i)

η̃i|ζ, vi, ∆c̃T , f̃T ∼ N
(
τ̄∗i , Γ̄∗i

)
v2

i |ζi, η̃i,∆c̃T , f̃T ∼ IG

(
ji,s + (T − 2)

2
,

zi,s + (ẽiT − Eiη̃i)
′ (ẽiT − Eiη̃i)

2

)

3. Draw st from the following distribution: p(st|st+1, ∆c̃t) ∝ p(st+1|st)p(st|∆c̃t)

4. Draw the parameters relative to the regime-switching latent variable:

p|s̃T ∼ beta(o1,1 + n1,1, o1,0 + n1,0)

q|s̃T ∼ beta(o0,0 + n0,0, o0,1 + n0,1)

µ̃|λ̃, σ2
c,0, σ2

c,1, s̃T , ∆c̃T ∼ N(b1, B1)

σ2
c,0|h1, µ̃, λ̃,s̃T , ∆c̃T ∼ IG

(
v1

2
,

δ1

2

)

h̄1|σ2
c,0, µ̃, λ̃, s̃T , ∆c̃T ∼ IG

(
v11

2
,

δ11

2

)
λ̃|µ̃, σ2

c,0, σ2
c,1, s̃T , ∆c̃T ∼ N(b̄, B̄)

5. Given sT and the parameters drawn above, draw sT+1 and compute E[FT+1|ΦT ]

and V[FT+1|ΦT ]

6. Separate the returns and the factor data into two groups according to the state of
the economy.
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7. Draw the parameters relative to the posterior distribution of returns for s = 1, 2:

((Σs)−1 |Rs, Fs) ∼W
(
(Ts + ν− k), (Hs + TΣ̂s + Âs ′ Js Âs)−1

)
(as| (Σs)−1 , Rs, Fs) ∼ N

(
ãs,
(

Σs ⊗ (Gs)−1
))

8. Given sT+1 = i drawn above, draw RT+1|as, Σs, Fs from the multivariate normal
distribution implied by R = XAs + Us, U ∼ iidN(0, Σs ⊗ IT).

Repeat steps 1-8 above until convergence of the Gibbs sampler. Once convergence is
reached, successive draws will come from the joint posterior distribution of all param-
eters involved. The starting values for the initial iteration are chosen arbitrarily, while
the starting values for the following ones are the parameters drawn in the previous
iteration. The latest value drawn is always used as conditioning variable.

The illustrated iterative process needs to be repeated M = (I + L) times, each
iteration provides a vector of draws of the type:

(RT+1, ∆c̃T , s̃T , ζi, η̃i,v2
i , p, q, µ̃, σ2

c,0, σ2
c,1, λ̃, (Σs)−1 , as)m (3.52)

For m = 1, ..., M. The first I draws are discarded, where I is the number of draws
necessary for the convergence of the Gibbs sampler. The remaining L = M− I draws
are kept, and represent draws from the joint posterior distribution of returns. These
draws are indicated as:

(RT+1, ∆c̃T , s̃T , ζi, η̃i,v2
i , p, q, µ̃, σ2

c,0, σ2
c,1, λ̃, (Σs)−1 , as)l (3.53)

And the joint posterior distribution from which they are drawn as:

p(RT+1, ∆c̃T , s̃T , ζi, η̃i,v2
i , p, q, µ̃, σ2

c,0, σ2
c,1, λ̃, (Σs)−1 , as) (3.54)

Given the L samples from the joint posterior distribution, the moments of the joint
distribution and all marginal distributions can be easily computed.

3.4 Portfolio Optimization

Following the principle just described, the first two moments of the predictive distribu-
tion can be obtained as:

E[RT+1|ΦT ]
L =

1
L

L

∑
l=1

(RT+1)l (3.55)

V[RT+1|ΦT ]
L =

1
L− 1

[(
(RT+1)l − E[RT+1|ΦT ]

L
)′ (

(RT+1)l − E[RT+1|ΦT ]
L
)]
(3.56)
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These can be used to solve the one period ahead portfolio optimization problem for
a mean-variance investor, so obtaining the portfolio weights given by:

ω∗ =
1
γ
{V[RT+1|ΦT ]}−1 E[RT+1|ΦT ] (3.57)

Where the expected value and covariance terms used are the first two moments of the
predictive distribution of returns as obtained in equations (3.55) and (3.56) respectively.

The optimal portfolio weights are computed for three different specifications: the
one state model (1S) the two-state Markov switching model (MS) and a two-state
Markov switching model where the state are obtained by taking into account the co-
movement between variables (MS_C ).In order to analyze the economic significance of
the difference in the optimal allocation, it is not sufficient to compare portfolio returns
because even portfolios with very different weights might have a similar portfolio return
due to the co-movement between assets. So, as proposed by Pastor and Stambaugh
2000, the certainty equivalent approach is used. This approach consists in computing
the difference in the certainty equivalent returns obtained with the two specifications,
given that only one is the data generating process the investor believes to be correct.

Given the choice of a mean-variance investor, the certain equivalent of returns and
Sharpe Ratio for model i is given by:

CERi = ω
′
i E[RT+1|ΦT ]

L − γ

2
ω
′
iV[RT+1|ΦT ]

Lωi (3.58)

SRi =
ω
′
i E[RT+1|ΦT ]

L

ωiV[RT+1|ΦT ]Lωi
(3.59)

The weights are obtained with the two different model specifications, whereas the
expected return and variance employed are those of the probability distribution the
investor believes to be true. For instance, if assuming the data is Markov switching
with co-movement, the Certainty Equivalent difference between the MS_C and MS
models is computed using the moments of the predictive distribution of returns in the
Markov-switching case with co-movement. The difference in CER and SR measures the
loss in utility and Sharpe Ratio of an investor who, believing in the Markov switching
model with co-movement, is forced to invest on the bases of a normal Markov-switching
model or a one-state model.

4 Data

The model is applied to the Fama French 10 Industry portfolios. The explanatory
variables used in the estimation are the Fama French size and book-to-market factors,
the excess return on the market and two additional macroeconomic variables: the growth
rate of the Consumer Price Index (CPI) and yield spreads between the Moody’s Baa
yields and the long term government bond (30 years). The data-set described is specific
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to the US and the date range considered goes from the first of January 1960 to the first
of December 2012. The chosen period includes various financial crises among which the
.com bubble and the sub-prime crisis.

As shown by Kim and Nelson 1998, accounting for co-movement among macroeco-
nomic variables significantly improves the estimations of regime switches as compared
to the ex-post NBER business cycle indicator. But financial crises don’t necessarily
coincide with business cycles and, even when they do, we don’t have the certainty that
co-movement plays a comparatively strong role in this case. For this reason I have cre-
ated a financial crisis ex-post indicator, similar to that created by Mishkin and White
2002. The 1987 fall is taken as a point of reference in establishing what defines a finan-
cial crisis. Both the velocity at which the fall occurs and the duration of the downturn
play an important role in defining a financial crisis. For this reason the US financial
market is defined to be in a crisis when one of the following conditions is verified: the
markets drops of at least 15% in one month, of at least 20% in three months or of at
least 40% in six months for ether the NASDAQ, the S&P 500 or the Dow Jones indices.
Figure .1 illustrates how the indicator created compares to the NBER business cycle
indicator. The two indicators often coincide but their timing isn’t identical, sometimes
a financial downturn precedes a recession and other times the recession follows a finan-
cial crisis. Additionally there are some crises that are only characteristic of the financial
markets and do not impact the economy as a whole.

5 Results

The Fama French 10 industry portfolios have notoriously been more difficult to predict
using multifactor models than portfolios constructed along other dimensions such as
size or book to market. Due to the lower predictability, when estimating a simple
Markov-switching model for the regression parameters it is very difficult to capture the
true state switches, such that the impact of including a Markov-switching component
in the decision problem is low. The results in this section show that simultaneously
accounting for mispricing uncertainty, state switches and co-movement during phases of
the economic cycle can significantly enhance predictability, having a significant economic
impact on portfolio choice.

5.1 Estimated regime switches

Comparing the goodness of the different models in capturing recession periods, Figure .2
shows the predicted state of the economy and the probability of recession obtained
using the MS model, while Figure .3 displays the same results as obtained with the
MS_C model. The model with co-movement almost exactly identifies all financial
crises, having an accuracy of 94%. Accuracy is defined as the percentage of times in
which the estimated probability of financial crisis agrees with the financial crisis index
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described in Section 4 on the prevailing regime. At times the co-movement model
identifies a crisis when none exists, most of the times this is due to the restrictive
definition of financial crisis used, in fact usually the conditions for being in a crisis
are almost met but the threshold is not crossed. The model without co-movement,
despite identifying most crisis periods, is much less precise in their timing, having an
overall precision of 74%. It is important to note that in both cases the regime switch is
identified solely through the probability distribution of the factors, which are the same
in the two models. The only difference is that in the model without co-movement a non-
informative prior is given to the probability distribution of the factor, whose likelihood
is assumed to be multivariate-normal; in the co-movement model, instead, the joint
behavior of the factors is modeled within the state-space component, so considering a
more informative behavior of the factors structure.

Finally Figure .4 shows the estimated latent common factor for the MS_C model
(∆Ct), representing the growth rate of the US financial market. It is clearly visible
that every time the estimated index drops this exactly coincides with the financial crisis
index highlighted.

5.2 Differences in the probability distributions

This section compares the differences in the probability distribution of the factors in
recessions and expansions for the two regime-switching models of interest: MS and
MS_C. Figures .5 to .9 show the conditional distribution of the factors in the two
regimes for both the MS and MS_C models.

Focusing on the excess return on the market, we can see that its conditional distribu-
tion is clearly different when only one regime is considered from when regime switching
is allowed. With both regime-switching models, with and without co-movement, we ob-
serve more negative skewness during crises with substantially lower mean, as expected
and pointed out in previous studies. What we can additionally see when improving
regime estimation by using co-movement is that the crisis regime is more rare but, at
the same time, the distribution of the excess return on the market is more skewed to
the left with a significantly lower posterior mean. This indicates that when ignoring co-
movement we are erroneously still averaging between crisis and tranquil times, leading
to an underestimation of tail risk in downturns. A similar reasoning can be applied to
the other factors considered.

In order to better understand these results Tables .1 to .8 show the posterior mean
and volatility of the distribution of the factors and of the excess return on the 10 industry
portfolios. All posterior values are monthly and their standard deviations are reported
in parenthesis.

Focusing again on the expected return on the market we can see that, as expected,
the posterior mean of the distribution on the one regime model (1S) is an average
between the bull and bear regimes, which are significantly different from one another
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in both models that allow for regime switches (MS and MS_C ). The posterior mean
is always negative in bear markets, while it is positive in bull markets. What can
additionally be seen by comparing the MS and MS_C models is that the difference in
expected excess return between the two regimes is much larger when considering the
co-movement model and this difference comes mostly from the bad states, as can be
seen by comparing the (Bull - Bull) and the (Bear - Bear) columns of Table .2. This
points out once again the underestimation of the magnitude and negative skewness of
downturns when ignoring the information provided by variables co-movement.

If looking at the posterior mean of the excess return on the 10 Industry portfolios
in Table .3 we can see that the analysis done above for the excess return on the market
applies in the same way here as well.

Looking at volatilities we can see that the posterior volatility of returns is always
higher in the bear regime, when introducing the possibility of regime switching, but this
time the the difference in volatility between states is less in the co-movement model.
If looking at Figure .5 the reason becomes evident. In fact in the model without co-
movement the range and dispersion of observations in the crisis period is much wider,
this is because it erroneously considers some tranquil times as being crisis times so
increasing volatility disproportionately.

Finally Figure .10 compares the predictive distribution of the excess return on the
10 industry portfolios for the three models of interest. Table .9 additionally reports
the posterior mean of the predictive distributions for the three models. As it is clearly
evident from both the Figure and the Table the mean and volatility of the predictive
densities, which are then used for portfolio selection, are clearly different conditionally
on the model being considered.

5.3 Differences in portfolio weights

Given the differences in the predictive distributions estimated with the three models,
this section analyzes their impact on optimal portfolio choice by comparing optimal
weights, Certainty Equivalent of Returns (CERs) and Sharpe Ratios (SRs). Assuming
a coefficient of risk-aversion γ = 10 and a σα = 1%, Table .10 shows that the impact is
quite substantial both in terms of the differences in the single weights and the differences
in overall portfolios as measured by the CERs and the SRs. In fact the optimal weight
on some of the industry portfolios even goes from positive to negative and magnitudes
vary significantly for all industry portfolios. The difference in CER is economically
relevant if considering that results are obtained at a monthly horizon. The difference in
the optimal allocation and its economic significance become more relevant the higher
the level of mispricing uncertainty σα. The CER and SR differences also increases
substantially when increasing the investment horizon.
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5.4 Out-of-sample

In order to analyze the out-of-sample behavior of the modes I left out T∗ observations
from the initial estimation, for different levels of T∗. For each of them I then estimated
the optimal portfolio weights for all three models for the time periods: N = [1 :
(T − T∗)], [1 : (T − T∗ + 1)], ..., [1 : (T − T∗ + T∗) = 1 : T]. Then I computed for
each of the N runs the realized portfolio returns by multiplying the computed optimal
weights by the actual return in the first period excluded in the calculation. I computed
an ex-post SR using the N realized returns and compared it by model specification.

Preliminary results suggest that the out-of-sample Sharpe Ratio obtained using the
model with co-movement is generally higher than that obtained using the other two
models.

6 Conclusion

By taking advantage of the additional information contained in factors co-movement
within regimes, in the US financial market, I am able to provide a significantly more ac-
curate estimation of bull and bear markets. This allows to generate regime-dependent
probability distributions of returns that account for more extreme behaviors in bear
markets, hence better accounting for non-linear downside and skewness risks. Ulti-
mately this leads to higher portfolio gains both in-sample and out-of-sample and finally
it allows to better time market turns. Failing to include co-movement determines a less
precise estimation of regimes and has a significant economic impact on the portfolio
decision.

The results highlighted in this Chapter show that it is possible to use quantitative
methods in order to extract private information from public aggregate signals for better
portfolio allocation. More work is needed in order to establish a direct connection
between the model described in this Chapter and the behavior of quantitative macro
hedge funds.

Future work should also analyze the result with a wider spectrum of assets and
factors, both in terms of predictability and mostly in terms of portfolio decision. The
optimal portfolio choice should be compared conditional on regimes in order to see
if the co-movement effect leads to more or less aggressive behavior. The impact of
mispricing uncertainty on the prediction should also be explored further. The out-of-
sample analysis should be expanded in order to explore the hypothesis that introducing
factors co-movement into the decision problem allows to detect and react to crises
earlier, possibly providing a form of portfolio hedge in periods when market returns are
low. Finally portfolio optimization should be repeated for a different choice of utility
function, particularly in the case of skewness aversion, to see if this exacerbates or
reduces the effect of factors co-movement on the optimal portfolio choice.
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APPENDIX

.1 General applications of Bayesian updating

The rules described in this session will be useful in understanding the solutions presented
throughout the paper.

.1.1 Properties of the multivariate normal distribution

Consider two variables (z1, z2) which are jointly distributed as follows:

z1, z2|Φt−1 ∼ MVN

((
µ1

µ2

)
,

[
Σ1,1 Σ1,2

Σ2,1 Σ2,2

])
(.1)

Then the conditional distribution of z1 on z2 will be:

z1|z2, Φt−1 ∼ N(µ∗, Σ∗) (.2)

Where:

µ∗ = µ1 + Σ1,2Σ−1
2,2 (z2 − µ2) (.3)

Σ∗ = Σ1,1 + Σ1,2Σ−1
2,2 Σ2,1 (.4)

.1.2 Bayesian updating for the Multivariate Normal distribution

Consider the following likelihood function, which is distributed as a multivariate normal:

p(y|θ) = MVN(Pθ, Σ) = (2π)−
n
2 |Σ|− 1

2 exp
{
− 1

2 (y− Pθ)′Σ−1(y− Pθ)
}

(.5)

= (2π)−
n
2 |Σ|− 1

2 exp
{
− 1

2 θ′(P′Σ−1P)θ + θ′P′Σ−1y− 1
2 y′Σ−1y

}
∝ exp

{
− 1

2 θ′(P′Σ−1P)θ + θ′P′Σ−1y
}

The conjugate prior for a multivariate normal likelihood is also multivariate Normal
as follows:

p(θ) = MVN(m, Ω) = (2π)−
n
2 |Ω|− 1

2 exp
{
− 1

2 (θ −m)′Ω−1(θ −m)
}

(.6)

= (2π)−
n
2 |Ω|− 1

2 exp
{
− 1

2 θ′Ω−1θ + θ′Ω−1m− 1
2 m′Ω−1m

}
∝ exp

{
− 1

2 θ′Ω−1θ + θ′Ω−1m
}
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Then the posterior will be also multivariate normal and it is obtained as the product
of the prior and the likelihood above such that:

p(θ|y) ∝ p(y|θ)p(θ) (.7)

∝ exp
{
− 1

2 θ′(P′Σ−1P)θ + θ′P′Σ−1y
}

exp
{
− 1

2 θ′Ω−1θ + θ′Ω−1m
}

∝ exp
{
− 1

2 θ′(Ω + P′Σ−1P)θ + θ′(Ω−1m + P′Σ−1y)
}

Hence the posterior follows the distribution below:

p(θ|y) = MVN(θ∗, Ω∗) (.8)

Where:

θ∗ = (Ω + P′Σ−1P)−1(Ω−1m + P′Σ−1y) (.9)

Ω∗ = (Ω + P′Σ−1P)−1 (.10)

.2 State-space representation

Given the model defined in equations (3.7)-(3.15) we assume that there are two states
of the economy and restrict the auto-regressive processes to two lags such that: ηi(L) =
1− ηi,1L − ηi,2L2 and λ(L) = 1− λ1L − λ2L2 and additionally define ζi(L) = ζi. If
we do not operate any transformations, as pointed out by Kim and Nelson 1999 the
model is over-identified. Hence it will be required to estimate a model in deviation of
the means. In order to do so define: f ∗i,t = fit − f̄i and ∆ct = ∆Ct − δ. Finally by
multiplying both sides of equation (3.7) by ηi(L) we can solve the following simplified
model.

(
f ∗i,t − ζi∆ct

)
= −ηi,1

(
f ∗i,t−1 − ζi∆ct−1

)
+ ηi,2

(
f ∗i,t−2 − ζi∆ct−2

)
+ εi,t (.11)

εit ∼ iidN(0, v2
i ) (.12)

(∆ct − µs,t) = λ1 (∆ct−1 − µs,t−1) + λ2 (∆ct−2 − µs,t−2) + wt (.13)

wt ∼ iidN(0, σ2
c,st) (.14)

µs
t = µ0 + µ1st (.15)
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σ2
c,st = σ2

c,0(1− st) + σ2
c,1st = σ2

c,0(1 + h1st) (.16)

P[st = 1|st−1 = 1] = p (.17)

P[st = 0|st−1 = 0] = q (.18)

In order to cast the model into state-space form we need to add another transfor-
mation by defining: f ∗∗it = ηi(L) f ∗i,t = f ∗i,t − ηi1 f ∗i,t−1 − ηi2 f ∗i,t−2, such that:

f ∗∗i,t = ζi∆ct − ηi,1ζi∆ct−1 − ηi,2ζi∆ct−2 + εi,t (.19)

εit ∼ iidN(0, v2
i ) (.20)

∆ct = λ1∆ct−1 + λ2∆ct−2 + µs,t − λ1µs,t−1 − λ2µs,t−2 + wt (.21)

wt ∼ iidN(0, σ2
c,st) (.22)

µs
t = µ0 + µs

1st (.23)

σ2
c,st = σ2

c,0(1− st) + σ2
c,1st = σ2

c,0(1 + h1st) (.24)

P[st = 1|st−1 = 1] = p (.25)

P[st = 0|st−1 = 0] = q (.26)

Writing down the model in matrix notation we have:

F∗∗t = Πξt + υt (.27)

ξt = Mst + Λξt−1 + κt (.28)

Or equivalently:
f ∗∗1,t
...

f ∗∗k,t

 =


ζ1 −ζ1η1,1 −ζ1η1,2
...

...
...

ζk −ζkηk,1 −ζkηk,2


 ∆ct

∆ct−1

∆ct−2

+


ε1,t
...

εk,t

 (.29)
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E(υtυ
′
t) = Υ =


v2

1 0 · · · 0

0
. . . 0

...
... 0

. . . 0
0 · · · 0 v2

k

 (.30)

 ∆ct

∆ct−1

∆ct−2

 =

 λ(L)µst

0
0

+

 λ1 λ2 0
1 0 0
0 1 0


 ∆ct−1

∆ct−2

∆ct−3

+

 wt

0
0

 (.31)

E[κtκ
′
t] = Ξst =

 σ2
c,st 0 0
0 0 0
0 0 0

 (.32)

.3 Solution of the state-space component

The solution detailed below is similar to that of Kim and Nelson 1999, Chapter 10,
with the difference that in their model only the mean of the business cycle variable is
Markov switching, whereas in the derivation below both the mean and the variance of
the latent variable are Markov switching.

.3.1 Generating the business cycle latent variable

As pointed out in Section 3.2.1, the matrix to be estimated is ξ̃T = [ξ1...ξT ]
′; all elements

can be estimated simultaneously from the following joint distribution: p(ξ̃T | f̃T). The
distribution, thanks to the Markov properties of the system, can be re-written as follows:

p(ξ̃T | f̃T) = p(ξT | f̃T)p(ξT−1|ξT , f̃T−1)p(ξ̃T−2|ξT−1, f̃T−2) (.33)

= p(ξT | f̃T)p(ξT−1|ξT , f̃T−1)p(ξT−2|ξT−1, f̃T−2)...p(ξ1|ξ2, f̃1) =

= p(ξT | f̃T)∏T−1
t=1 p(ξt|ξt+1, f̃t)

The estimation is obtained through Multimove-Gibbs sampling, as proposed by
Carter and Kohn 1994). Given the above simplification the vector ξt can be obtained
recursively for each time period by first generating ξT from p(ξT | f̃T) and then for
t = (T − 1), (T − 2), ..., 1 generating ξt from p(ξt|ξt+1, f̃t).

before proceeding to show how the estimation can be obtained step by step, note that
the matrix Ξ is non-singular, only the element (1, 1) of the matrix is relevant the rest
are all zeroes. This is due to the fact that only the first line of the transition equation
is relevant, while the other lines are identities. Hence when computing ξt|ξt+1, f̃t we
won’t use the whole vector ξt+1 as a conditioning variable but only its first element:
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∆ct+1. This considerations allows to simplify the distributions as follows:

p(ξ̃T | f̃T) = p(∆̃cT | f̃T) = p(∆cT | f̃T)
T−1

∏
t=1

p(∆ct|∆ct+1, f̃t) (.34)

∆cT | f̃T ∼ N(ET [ξT ](1), ET [PT ](1, 1)) (.35)

∆ct|∆ct+1, f̃t ∼ N(Et[ξt|∆ct+1](1), Et[Pt|∆ct+1](1, 1)) (.36)

Where ET [ξT ](1) is the first element of the vector ET [ξT ], ET [PT ](1, 1) is the (1, 1) el-
ement of the matrix ET [PT ], Et[ξt|∆ct+1](1) is the first element of the vector Et[ξt|∆ct+1]

and Et[Pt|∆ct+1](1, 1) is the (1, 1) element of the matrix Et[Pt|∆ct+1].
The estimation can be obtained through the following steps:
First run the Kalman filter to obtain Et[ξt] and Et[Pt] for t = 1, ..., T and save

them. The last iteration provides ET [ξT ] and ET [PT ] which allow to draw ∆cT from
∆cT | f̃T ∼ N(ET [ξT ](1), ET [PT ](1, 1)).

More in detail, the predictive equations of the Kalman filter, obtained from the
transition equation of the model are:

Et−1[ξt] = Mst + ΛEt−1[ξt−1] (.37)

Et−1[Pt] = ΛEt−1[Pt−1]Λ′ + Ξst (.38)

Et−1[ψt] = f ∗∗t − Et−1[ f ∗∗t ] = f ∗∗t −ΠEt−1[ξt] (.39)

Et−1[gt] = ΠEt−1[Pt]Π′ + Υ (.40)

Where ψt is the prediction error and gt is its conditional variance.
The updating equations instead are obtained by applying the simple rule of multi-

variate normal distributions described in Appendix .1. If ξt and Et−1[ψt] are assumed
to be jointly distributed as a multivariate normal we can easily obtain the distribution
of ξt|Et−1[ψt], Φt−1as follows:

ξt, Et−1[ψt]|Φt−1 ∼ MVN

((
Et−1[ξt]

0

)
,

[
Et−1[Pt] Et−1[Pt]Π′

ΠEt−1[Pt] Et−1[gt]

])
(.41)

Then the updating equations of the Kalman filter will be given by:

ξt|Et−1[ψt], Φt−1 ∼ N(Et[ξt], Et[Pt]) (.42)
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Et[ξt] = Et−1[ξt] + Et−1[Pt]Π′Et−1[gt]
−1Et−1[ψt] (.43)

Et[Pt] = Et−1[Pt]− Et−1[Pt]Π′Et−1[gt]
−1ΠEt−1[Pt] (.44)

By defining the Kalman gain as: K = Et−1[Pt]Π′Et−1[gt]−1then the updating equa-
tions can be re-written as:

Et[ξt] = Et−1[ξt] + KEt−1[ψt] (.45)

Et[Pt] = Et−1[Pt]− KΠEt−1[Pt] (.46)

Once we have drawn ∆cT from ∆cT | f̃T ∼ N(ET [ξT ](1), ET [PT ](1, 1)) if we consider
the generated ∆ct+1 as additional information to the system, then the distribution of
∆ct|∆ct+1, f̃t can be obtained by applying the updating equations of the Kalman filter
recursively for t = (T − 1), (T − 2), ..., 1.

Considering that ∆ct+1 = λ(L)µst+1 + Λ(1)ξt + κt+1(1), where Λ(1) is the first row
of Λ and κt+1(1) is the first element of κt+1, we have:

Et[ξt|∆ct+1] = Et[ξt] + Et[Pt]Λ(1)′Et+1[g∗t ]
−1Et+1[ψ

∗
t ] (.47)

Et[Pt|∆ct+1] = Et[Pt]− Et[Pt]Λ(1)′Et+1[g∗t ]
−1Λ(1)Et[Pt] (.48)

g∗t+1 = ∆ct+1 − λ(L)µst+1 −Λ(1)Et[ξt] (.49)

ψ∗t+1 = Λ(1)Et[Pt]Λ(1)′ + σ2
c,st+1

(.50)

Finally ∆ct can be drawn from the distribution:

∆ct|∆ct+1, f̃t ∼ N(Et[ξt|∆ct+1](1), Et[Pt|∆ct+1](1, 1)) (.51)

.3.2 Generating the parameters relative to the factor equations

Conditional on ∆c̃T and f̃T the system collapses to K equations with auto-correlated
disturbances, hence the only relevant equations are:

f ∗i,t = ζi∆ct + ei,t (.52)

ηi(L)eit = εit (.53)
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εit ∼ iidN(0, v2
i ) (.54)

Generate ζi:
First we will generate ζi conditional on η̃i = [η1η2]

′, v2
i,st

, ∆c̃T and f̃T.
As shown in Appendix .3, by multiplying both sides of equation (.52) by ηi(L) =

1− η1L− η2L2 the above system of equations can be re-written as:

f ∗∗i,t = ζi∆c∗t + εi,t (.55)

εit ∼ iidN(0, v2
i ) (.56)

Where f ∗∗it = ηi(L) f ∗i,t = f ∗i,t − ηi1 f ∗i,t−1 − ηi2 f ∗i,t−2 and ∆c∗t = ∆ct − ηi1∆ct−1 −
ηi2∆ct−2. Or, in matrix form:

f̃ ∗∗i,T = ζi∆c̃∗T + εi (.57)

εi ∼ iidN(0, v2
i ιT−2) (.58)

Where f̃ ∗∗i,T = [ f ∗∗i,1 · · · f ∗∗i,T ]
′, ∆c̃∗T = [∆c∗1 · · ·∆c∗T ]

′ and εi = [ε1 · · · εT ]
′. Considering

a normal prior for ζi such that ζi|η̃i, vi ∼ N
(
τi, Γi

)
and combining it with its normal

likelihood, we obtain the following posterior(see Appendix .1 for more details).

ζi|η̃i, vi, ∆c̃T , f̃T ∼ N (τ̄i, Γ̄i) (.59)

τ̄i =
(

Γ−1
i + v−2

i ∆c̃∗
′

T ∆c̃∗T
)−1 (

Γ−1
i τi + v−2

i ∆c̃∗
′

T ∆ f̃ ∗∗i,T

)
(.60)

Γ̄i =
(

Γ−1
i + v−2

i ∆c̃∗
′

T ∆c̃∗T
)−1

(.61)

Generate η̃i:
Next we can generate η̃i = [η1η2]

′ conditional on ζi, v2
i , ∆c̃T and f̃T. The relevant

equations in this case are:

eit = ηi1et−1 + ηi2et−2 + εit (.62)

εi ∼ iidN(0, v2
i ιT−2) (.63)

Or in matrix form:

ẽiT = η̃′i Ei + εi (.64)
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Where ẽiT = [ei1 · · · eiT ]
′ = f ∗i,t − ζi∆ct and Ei is a (2× (T − 2)) matrix such that

Ei = [ẽiT−1 ẽiT−2]
′. With a similar procedure as before, assigning a normal prior to

η̃i such that η̃i|ζi, vis ∼ N
(
τi
∗, Γi

∗) and multiplying it by its likelihood we obtain the
following normal posterior distribution for η̃i:

η̃i|ζ, vi, ∆c̃T , f̃T ∼ N
(
τ̄∗i , Γ̄∗i

)
(.65)

τ̄∗i = (Γi
∗−1 + v−2

i EiE′i)
−1(Γi

∗−1τi
∗ + v−2

i Ei ẽ′iT)
−1 (.66)

Γ̄∗i = (Γi
∗−1 + v−2

i EiE′i)
−1 (.67)

Generate v2
i :

Finally we generate v2
i conditional on η̃i, ζi, ∆c̃T, f̃T and s̃T. To do so we assume an

inverted gamma prior on v2
i such that v2

i |ζi, η̃i ∼ IG
(

ji
2 , zi

2

)
which, combined with its

likelihood yields the following posterior distribution:

v2
i |ζi, η̃i,∆c̃T , f̃T ∼ IG

(
ji + (T − 2)

2
,

zi +
(
ẽiT − η̃′i Ei

)′ (ẽiT − η̃′i Ei
)

2

)
(.68)

.3.3 Generating the parameters relative to the state of the economy

Finally we need to generate the state of the economy and all parameters related to it:
s̃T , λ1, λ2, µ0, µ1, σ2

c,0, σ2
c,1, p, q conditional on ∆c̃T. The procedure is very similar to that

adopted in Appendix .3.1 and .3.2.

Generating s̃T:
The probability distribution p(s̃T |∆c̃T) can be transformed in the same manner as

equation (??) due to the Markov property of the system, such that:

p(s̃T |∆c̃T) = p(sT |∆c̃T)
T−1

∏
t=1

p(st|st+1, ∆c̃t) (.69)

Similarly to what was done in Appendix .3.1 this distribution can be obtained in
two steps:

1. First p(st|∆c̃t) is obtained by running a Hamilton filter (the discrete version of a
Kalman filter) for t = 1, ..., T and all values are stored. From the last iteration we
obtain p(sT |∆c̃T) from which sT can be drawn.

2. Then p(st|st+1, ∆c̃t) can be obtained by iterating backwards starting from sT ob-
tained above for t = (T − 1), ..., 1 by drawing st from the following distribution:

p(st|st+1, ∆c̃t) =
p(st+1|st)p(st|∆c̃t)

p(st+1|∆c̃t)
∝ p(st+1|st)p(st|∆c̃t) (.70)
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Where p(st|∆c̃t) has been obtained in step 1 and p(st+1|st) are the transition prob-
abilities.

st is obtained from the distribution above by first computing:

Pr[st = 1|st+1 = 1, ∆c̃t] =
p(st+1|st = 1)p(st = 1|∆c̃t)

∑1
j=0 p(st+1|st = j)p(st = j|∆c̃t)

(.71)

Then drawing a random number from a normal distribution bounded between [0, 1]
and assigning st = 0 if the random number generated is less than or equal to the value
of Pr[st = 1|st+1 = 1, ∆c̃t]; otherwise st = 1.

Generating p, q:
The second step consists in generating p, q conditional on s̃T = [s1, ..., sT ]. Assuming

beta priors for p, q such that p ∼ beta(o11, o1,0) and q ∼ beta(o0,0, o0,1) and the joint
prior is given by;

p(p, q) ∝ po1,1−1(1− p)o1,0−1qo0,0−1(1− q)o0,1−1 (.72)

These can be combined with the following likelihood:

L(p, q|s̃t) = pn1,1(1− p)n1,0 qn0,0(1− q)n0,1 (.73)

Where ni,j indicates how many times the system switched from state i to state j
which can be easily counted from s̃T, previously generated.

By combining the prior with the likelihood we obtain the following posterior distri-
bution:

p(p, q|s̃t) ∝ po1,1+n1,1−1(1− p)o1,0+n1,0−1qo0,0+n0,0−1(1− q)o0,1+n0,1−1 (.74)

Hence p, q can be drawn from the following posterior distributions:

p|s̃T ∼ beta(o1,1 + n1,1, o1,0 + n1,0) (.75)

q|s̃T ∼ beta(o0,0 + n0,0, o0,1 + n0,1) (.76)

Generating µ̃:
Then µ̃ = [µ0µ1]

′ can be generated conditional on s̃T , ∆c̃T , λ̃, σ2
c,0, σ2

c,1. In order to do
so consider the following part of the system:

∆ct = λ1∆ct−1 + λ2∆ct−2 + µs,t − λ1µs,t−1 − λ2µs,t−2 + wt (.77)

wt ∼ iidN(0, σ2
c,st) (.78)
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µs
t = µ0 + µs

1st (.79)

Defining ∆c∗∗t = L(λ)∆ct = ∆ct − λ1∆ct−2 − λ2∆ct−2 and substituting equation
(.79) into equation (.77) we have:

∆c∗∗t = µ0(1− λ1 − λ2) + µ1(st − λ1st−1 − λ2st−2) + wt (.80)

Dividing both sides of equation (.80) by σ2
c,st and define ∆cx

t =
∆c∗∗t
σc,st

, x = (1−λ1−λ2)
σc,st

and x1,t =
(st−λ1st−1−λ2st−2)

σc,st
we obtain:

∆cx
t = µ0x0,t + µ1x1,t + w∗t (.81)

w∗t =
wt

σc,st

∼ iidN(0, 1) (.82)

Which in matrix notation yields:

∆cx = Xµ̃ + W (.83)

W ∼ N(0, ιT) (.84)

Now we can attribute a Normal prior to µ̃ and proceed to obtaining the posterior
as illustrated in Appendix .1.

Let the prior distribution of µ̃ be such that µ̃|λ̃, σ2
c,0, σ2

c,1 ∼ N(b0, B0) then combining
it with its likelihood we obtain the following posterior distribution for µ̃:

µ̃|λ̃, σ2
c,0, σ2

c,1, s̃T , ∆c̃T ∼ N(b1, B1) (.85)

b1 = (B−1
0 + X′X)−1(B−1

0 b0 + X′∆cx) (.86)

B1 = (B−1
0 + X′X)−1 (.87)

Draws of µ̃ from the posterior distribution above will only be kept if µ1 > 0.

Generating σ2
c,0:

The equation that illustrates the behavior of σ2
c,st is the following:

σ2
c,s = σ2

c,0(1− st) + σ2
c,1st = σ2

0 (1 + h1st) (.88)

In order to generate σ2
c,0, similarly to what was done above, consider equation (.80)

and transform it by dividing both sides by by
√

1 + h1st such that:
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∆cxx
t = µ0xx

0,t + µ1xx
1t + wx

t (.89)

wx
t =

wt√
1 + h1st

∼ N(0, σ2
c,0) (.90)

Where:

∆cxx
t =

∆c∗∗t√
1 + h1st

(.91)

xx
0,t =

(1− λ1 − λ2)√
1 + h1st

(.92)

xx
1t =

(st − λ1st−1 − λ2st−2)√
1 + h1st

(.93)

Then defining an inverted gamma prior for σ2
c,0 such that:

σ2
c,0|h1, µ̃, λ̃ ∼ IG

(
v0

2
,

δ0

2

)
(.94)

Then combining it with its posterior as shown in Appendix .1 yields:

σ2
c,0|h1, µ̃, λ̃,s̃T , ∆c̃T ∼ IG

(
v1

2
,

δ1

2

)
(.95)

Where:

v1 = v0 + T (.96)

δ1 = δ0 +
T

∑
t=1

(
∆cxx

t − µ0xx
0,t + µ1xx

1t
)2 (.97)

Generating σ2
c,1:

In order to generate σ2
c,1we first generate h̄1 = (1 + h1) then σ2

c,1 is obtained through
the relationship σ2

c,1 = σ2
c,0h̄1. In order to generate h̄1 we transform equation (.80) as

follows:

∆cxxx
t = µ0xxx

0,t + µ1xxx
1t + wxx

t (.98)

Where:

∆cxxx
t =

∆c∗∗t
σc,0

(.99)

xx
0,t =

(1− λ1 − λ2)

σc,0
(.100)
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xx
1t =

(st − λ1st−1 − λ2st−2)

σc,0
(.101)

wx
t =

wt

σc,0
∼ N(0, 1 + h1st) (.102)

Then if we define the prior for h̄1as h̄1|σ2
c,0, µ̃, λ̃ ∼ IG

(
v00

2 , δ00

2

)
and we combine it

with its likelihood, we obtain the following posterior distribution:

h̄1|σ2
c,0, µ̃, λ̃, s̃T , ∆c̃T ∼ IG

(
v11

2
,

δ11

2

)
(.103)

Where:

v11 = v00 + T1 (.104)

δ11 = δ00 +
N1

∑
(
∆cxxx

t − µ0xxx
0,t + µ1xxx

1t
)2 (.105)

Where T1 is the number of times the system is in state 1, which can be counted
from s̃T and the symbol ∑N1indicates that the sum is computed only on the data that
corresponds to the time periods when st = 1.

Generating λ̃:
To generate λ̃ conditional on s̃T , ∆c̃T , µ̃, σ2

c,0, σ2
c,1consider the following transformation

of equation (.77):

y∗t = λ1y∗t−1 + λ2y∗t−2 + w∗t (.106)

Where:

y∗t =
(∆ct − µst)

σc,st

(.107)

w∗t =
wt

σc,st

∼ iidN(0, 1) (.108)

Then in matrix form we have:

Y∗ = YLλ̃ + W (.109)

If defining the prior on λ̃ as λ̃|µ̃, σ2
c,0, σ2

c,1 ∼ N(b, B) and combining it with its
likelihood we obtain the following posterior distribution from which λ̃ can be drawn:

λ̃|µ̃, σ2
c,0, σ2

c,1, s̃T , ∆c̃T ∼ N(b̄, B̄) (.110)

Where:
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b̄ =
(

B−1 + YL′YL
)−1 (

B−1b + YL′Y∗
)

(.111)

B̄ =
(

B−1 + YL′YL
)−1

(.112)

.4 Details on the derivation of the posterior of the returns factor
model

.4.1 Priors

The joint prior on the regression parameters, conditional on the state of the economy,
can be written as:

p(As, Σs) = p(As|Σs)p(Σs) = p(αs|Σs)p(Σs)p(Bs) (.113)

∝ |Ψ(Σs)| 12 exp
{
− 1

2 (As − Ās)′Ψ(Σs)(As − Ās)
}
|Σs|

−(ν+n+1)
2 exp

{
− 1

2 tr
(
(Σs)−1 Hs

)}
∝ |Σs|

−(ν+n+2)
2 exp

{
(Bs − Bs)′ (Ωs)−1 (Bs − ¯Bs)

}
(.114)

exp

{
− 1

2 (α
s)′
(

σ2
α

(ss)2 Σs
)−1

(αs)− 1
2 tr
(
(Σs)−1 Hs

)}

The equality p(As|Σs)p(Σs) = p(αs|Σs)p(Σs)p(Bs) is only possible because of how
the matrix Ψ(Σs) is defined - αs and Bs are independent and the variance of Bs is
independent from Σs.

Additionally the term (Bs− Bs)′ (Ωs)−1 (Bs− ¯Bs) goes to zero as Ωs is chosen to be a
diagonal matrix with very large diagonal elements in order to provide a non-informative
prior for Bs.

Hence the joint prior on the regression parameters can be considered as:

p(As, Σs) ∝ |Σs|
−(ν+n+2)

2 exp

−1
2
(αs)′

(
σ2

α

(ss)2 Σs

)−1

(αs)− 1
2

tr
(
(Σs)−1 Hs

) (.115)

If further considering the transformation proposed by Tu 2010 such that:[
(αs)′

(
σ2

α

(ss)2 Σs
)−1

(αs)

]
=
[
(as)′

(
Σ−1 ⊗ D

)
(as)

]
,

where a = vec(a) and D is a matrix of zeroes, whose (1, 1) element equals s2

σ2
α
. Then

the joint prior for the regression parameters can be rewritten as a function of only (a, Σ)
as follows:
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p(As, Σs) ∝ |Σs|
−(ν+n+2)

2 exp
{
−1

2
(a)′

(
(Σs)−1 ⊗ Ds

)−1
(as)− 1

2
tr
(
(Σs)−1 Hs

)}
(.116)

.4.2 Posterior

The derivation of the posterior distributions below follows Tu 2010.

p(as, Σs|Rs, Fs) ∝ (.117)

∝ |Σs|− k+1
2 exp

{
− 1

2 (as)′((Σs)−1 ⊗ Ds)(as)− 1
2 tr
[
(as − âs)′((Σs)−1 ⊗ Xs′Xs)(as − âs)

]}
×|Σs|−

(T+ν+n−k+1)
2 exp

{
− 1

2 tr
(

Hs + TsΣ̂s
)
(Σs)−1

}
Defining: G = Ds + (Xs′Xs) and Js = Xs′Xs − Xs′Xs (Gs)−1 Xs′Xs and completing

the square on c we obtain:

p(as, Σs|Rs, Fs) ∝ |Σs|− k+1
2 exp

{
− 1

2 (as − ãs)′((Σs)−1 ⊗ Gs)(as − ãs)
}

(.118)

×|Σs|−
(T+ν+n−k+1)

2 exp
{
− 1

2 tr
(

Hs + TsΣ̂s + Âs ′ Js Âs
)
(Σs)−1

}

From which we can derive the following posterior distributions for as and Σs, condi-
tional on the state of the economy:

((Σs)−1 |Rs, Fs) ∼W
(
(Ts + ν− k), (Hs + T ˆsΣs + Âs ′ J ˆs As)−1

)
(.119)

(as| (Σs)−1 , Rs, Fs) ∼ N
(

ãs,
(

Σs ⊗ (Gs)−1
))

(.120)

Where ãs =
(

IN ⊗
(
(Gs)−1 Xs′Xs

))
âs.

.5 Gibbs Sampler

The Gibbs sampling procedure allows to estimate empirically the joint and marginal
distribution of a number of variables by only using their conditional distributions.

This can be achieved as follows:
Consider N variables yi for i = 1, ...N whose joint distribution is given by:

p(y1, y2, ..., yN) (.121)

Further define their marginal distributions as:
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p(yi) =
∫
· · ·

∫
p(y1, y2, ..., yN)dy1...dyN (.122)

While the conditional distributions can be defined as:

p(yi|y1, y2, ..., yN) (.123)

If the conditional distributions are known, the empirical marginal and joint distri-
butions can be obtained with the following iterative process:

0. Choose arbitrary initial values
1. Draw y1 from its conditional distribution p(y1|y2, ..., yN)

2. Draw y2 from its conditional distribution p(y2|y1, y3, ..., yN), note the value of y1

drawn in the step above is used here
...
N. Draw yN from its conditional distribution p(y2N |y1, y3, ..., yN−1), note the values

of (y1, ..., yN−1) drawn in the steps above are used here
Repeat steps 1-N above for M = (I + L) times, where I is the number of iterations

needed for convergence of the Gibbs sampler. Note that the initial values at the begin-
ning of each iteration are the values drawn in the previous iteration, excluding the first
iteration, where initial values are chosen arbitrarily. Each time the loop above is re-
peated we have a sample of the type (y1, y2, ..., yN)m for m = 1, ...M. The first I samples
can be discarded while the L remaining samples are saved and used for the computation
of the moments of the joint and marginal distributions. In fact, after the sampler has
converged, further draws are taken from the joint distribution of the variables. So this
procedure allows to have L samples (y1, y2, ..., yN)l for l = 1, ..., L, drawn from the joint
distribution p(y1, y2, ..., yN). At this point empirical moments of the joint distribution
and all marginal distributions can be easily computed.

For instance the mean of the marginal distribution for yi can be obtained as:

µi =
1
K

M

∑
m=I+1

yi (.124)

More details on Gibbs sampling can be found in Casella and George 1992 and Albert
and Albert and Chib 1993.
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Tables and Figures

Figure .1: Comparison of financial crises and recessions: comparison of the NBER recession
dates (panel 2) with an indicator of financial crises constructed as follows (panel 1). The US financial
market is defined to be in a crisis when: the markets drops of at least 15% in one month OR of at
least 20% in three months OR of at least 40% in six months for ether the NASDAQ, the S&P 500
or the Dow Jones indices.

Figure .2: Regime and probability of financial crisis using the Markov-Switching model
without Co-movement: comparison of the probability of crisis estimated using the MS model
with the finacial crisis indicator described in Figure .1
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Figure .3: Regime and probability of financial crisis using the Markov-Switching model
with Co-movement: comparison of the probability of crisis estimated using the MS_C model
with the finacial crisis indicator described in Figure .1

Figure .4: Estimated common latent variable: this figure displays the common latent variable
reppresenting the growth rate of the financial market estimated using the MS_C model. The
highlighted area reppresents the finacnial crisis periods computed as described in Figure .1
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Figure .5: Probability distribution of the excess return on the market: panel 1 shows the
excess return on the market, financial crisis periods are highlighted; panel 2 displays the probability
distribution of the excess return in the one-state model 1s; panels 3 and 4 display the probability
distribution of the excess return in tranquil times for the model without co-movement MS and the
model with co-movement MS_C respectively; panels 5 and 6 display the probability distribution
of the excess return in crises times for the model without co-movement MS and the model with
co-movement MS_C respectively

Figure .6: Probability distribution of the yield spread: panel 1 shows the yield spread,
financial crisis periods are highlighted; panel 2 displays the probability distribution of the yield
spread in the one-state model 1s; panels 3 and 4 display the probability distribution of the yield
spread in tranquil times for the model without co-movement MS and the model with co-movement
MS_C respectively; panels 5 and 6 display the probability distribution of the yield spread in crises
times for the model without co-movement MS and the model with co-movement MS_C respectively
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Figure .7: Probability distribution of CPI growth: panel 1 shows CPI growth, financial crisis
periods are highlighted; panel 2 displays the probability distribution of CPI growth in the one-state
model 1s; panels 3 and 4 display the probability distribution of CPI growth in tranquil times for
the model without co-movement MS and the model with co-movement MS_C respectively; panels
5 and 6 display the probability distribution of CPI growth in crises times for the model without
co-movement MS and the model with co-movement MS_C respectively
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Figure .8: Probability distribution of HML: panel 1 shows HML, financial crisis periods are
highlighted; panel 2 displays the probability distribution of HML in the one-state model 1s; panels
3 and 4 display the probability distribution of HML in tranquil times for the model without co-
movement MS and the model with co-movement MS_C respectively; panels 5 and 6 display the
probability distribution of HML in crises times for the model without co-movement MS and the
model with co-movement MS_C respectively
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Figure .9: Probability distribution of SMB: panel 1 shows SMB, financial crisis periods are
highlighted; panel 2 displays the probability distribution of SMB in the one-state model 1s; panels
3 and 4 display the probability distribution of SMB in tranquil times for the model without co-
movement MS and the model with co-movement MS_C respectively; panels 5 and 6 display the
probability distribution of SMB in crises times for the model without co-movement MS and the
model with co-movement MS_C respectively

Figure .10: Predictive distribution of return: predictive distribution of returns for time (t+ 1)
for the 10 Fama–French industry portfolios, obtained using the three models of interest (1s, MS and
MS_C )
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Table .1: Posterior Mean of the Factors
This table shows the posterior mean of the distribution of the factors. The factors con-
sidered are: the yield spreads between the Moody’s Baa yields and the long term (30 yrs)
government bond (Yield Spread), the growth rate of the Consumer Price Index (CPI), the
excess return on the market (Mkt− R f ) and the Fama–French size (SMB) and book-to-
market (HML) factors. Model (1) shows the results for the one-state model (1S). Models
(2-4) display results for the 2-state Markov switching model without co-movement, models
(2) and (3) show the posterior mean of the distribution for the Bull and the Bear states
respectively, model (4) displays the difference in posterior mean between the two states
(Bull − Bear). Models (5-7) display results for the 2-state Markov switching model with
co-movement, models (5) and (6) show the posterior mean of the distribution for the Bull
and the Bear states respectively, model (7) displays the difference in posterior mean between
the two states (Bull − Bear). All posterior values are monthly

One State Two States Two States with Comovement
1S Bull Bear Di f f Bull Bear Di f f
(1) (2) (3) (4) (5) (6) (7)

Yield Spread 7.86 6.71 9.85 -3.14 7.79 8.77 -0.98
(0.25) (0.30) (0.46) (0.49) (0.26) (1.10) (1.12)

CPI Growth 0.32 0.25 0.46 -0.21 0.31 0.45 -0.14
(0.02) (0.02) (0.04) (0.04) (0.02) (0.11) (0.11)

(Mkt− R f ) 0.47 0.86 -0.26 1.12 1.01 -6.46 7.47
(0.18) (0.18) (0.43) (0.49) (0.23) (1.44) (1.39)

SMB 0.22 0.19 0.27 -0.08 0.48 -2.97 3.44
(0.12) (0.13) (0.28) (0.32) (0.14) (0.89) (0.88)

HML 0.38 0.25 0.64 -0.39 0.16 3.26 -3.10
(0.11) (0.11) (0.28) (0.31) (0.12) (0.96) (0.96)

Standard deviations in parenthesis
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Table .2: Differences in Posterior Mean of the Factors
This table shows differences in the posterior mean of the distribution of the factors for the
two Markov switching models with and without comovement (MS_C−MS). The factors
considered are the same as described in Table .1. Models (1) and (2) display the difference
in the posterior mean of the distribution for the Bull and the Bear states respectively.
Model (3) displays difference in the difference between the posterior distribution of the
factors between the Bull and Bear states in the two considered models (MS_C−MS). All
posterior values are monthly

Comparison : MS_C − MS
Bull − Bull Bear− Bear [(Bull − Bear)− (Bull − Bear)]

(1) (2) (3)
Yield Spread 1.08 -1.08 2.17

(0.30) (1.13) (1.21)
CPI Growth 0.06 0.00 0.07

(0.02) (0.11) (0.11)
(Mkt− R f ) 0.15 -6.20 6.39

(0.29) (1.50) (1.49)
SMB 0.28 -3.24 3.47

(0.19) (0.93) (0.96)
HML -0.09 2.62 -2.69

(0.16) (1.00) (0.99)
Standard deviations in parenthesis
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Table .3: Posterior mean of the excess return on the 10 industry portfolios
This table shows the posterior mean of the distribution of the 10 Fama–French industry
portfolios. The industries considered are: ... Model (1) shows the results for the one-state
model (1S). Models (2-4) display results for the 2-state Markov switching model without
co-movement, models (2) and (3) show the posterior mean of the distribution for the Bull
and the Bear states respectively, model (4) displays the difference in posterior mean between
the two states (Bull− Bear). Models (5-7) display results for the 2-state Markov switching
model with co-movement, models (5) and (6) show the posterior mean of the distribution
for the Bull and the Bear states respectively, model (7) displays the difference in posterior
mean between the two states (Bull − Bear). All posterior values are monthly

One State Two States Two States with Comovement
1S Bull Bear Di f f Bull Bear Di f f
(1) (2) (3) (4) (5) (6) (7)

NoDur 0.54 0.87 -0.06 0.93 0.98 -4.85 5.83
(0.17) (0.19) (0.39) (0.46) (0.20) (1.35) (1.33)

Durbl 0.64 0.90 0.09 0.81 1.22 -6.68 7.91
(0.24) (0.26) (0.56) (0.64) (0.28) (1.85) (1.83)

Manu f 0.55 0.92 -0.15 1.07 1.11 -6.38 7.49
(0.20) (0.21) (0.47) (0.54) (0.24) (1.60) (1.57)

Enrgy 0.74 1.11 0.14 0.97 1.14 -4.18 5.32
(0.21) (0.23) (0.47) (0.55) (0.23) (1.54) (1.56)

HiTec 0.56 0.99 -0.23 1.22 1.32 -8.88 10.20
(0.26) (0.27) (0.61) (0.70) (0.31) (2.05) (1.98)

Telcm 0.43 0.81 -0.19 1.00 0.82 -4.38 5.20
(0.18) (0.20) (0.42) (0.49) (0.21) (1.31) (1.30)

Shops 0.54 0.90 -0.16 1.06 1.12 -6.55 7.67
(0.20) (0.22) (0.48) (0.56) (0.24) (1.59) (1.55)

Hlth 0.45 0.91 -0.32 1.23 0.91 -4.94 5.85
(0.19) (0.22) (0.43) (0.51) (0.23) (1.30) (1.28)

Utils 0.21 0.57 -0.37 0.94 0.47 -2.57 3.04
(0.15) (0.17) (0.34) (0.40) (0.18) (1.12) (1.15)

Other 0.49 0.95 -0.31 1.26 1.08 -6.64 7.72
(0.21) (0.23) (0.49) (0.57) (0.26) (1.64) (1.62)

Standard deviations in parenthesis
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Table .4: Differences in Posterior Mean of the Excess Return on the 10 Industry
Portfolios
This table shows differences in the posterior mean of the distribution of the excess return
on the 10 Fama–French industry portfolios for the two Markov switching models with and
without comovement (MS_C−MS). The industries considered are the same as described in
Table .3. Models (1) and (2) display the difference in the posterior mean of the distribution
for the Bull and the Bear states respectively. Model (3) displays difference in the difference
between the posterior distribution of the factors between the Bull and Bear states in the
two considered models (MS_C−MS). All posterior values are monthly

Comparison : MS_C − MS
Bull − Bull Bear− Bear [(Bull − Bear)− (Bull − Bear)]

(1) (2) (3)
NoDur 0.12 -4.78 4.90

(0.28) (1.40) (1.41)
Durbl 0.32 -6.77 7.10

(0.39) (1.95) (1.96)
Manu f 0.19 -6.23 6.42

(0.32) (1.67) (1.67)
Enrgy 0.03 -4.32 4.35

(0.32) (1.61) (1.65)
HiTec 0.34 -8.65 8.98

(0.41) (2.14) (2.10)
Telcm 0.01 -4.19 4.20

(0.29) (1.38) (1.39)
Shops 0.22 -6.40 6.62

(0.33) (1.66) (1.65)
Hlth 0.00 -4.62 4.62

(0.31) (1.37) (1.38)
Utils -0.10 -2.19 2.10

(0.24) (1.17) (1.21)
Other 0.13 -6.33 6.46

(0.34) (1.72) (1.72)
Standard deviations in parenthesis

46



Table .5: Posterior Volatility of the Factors
This table shows the posterior volatility of the distribution of the factors. The factors
considered are the same as in Table .1. Model (1) shows the results for the one-state model
(1S). Models (2-4) display results for the 2-state Markov switching model without co-
movement, models (2) and (3) show the posterior mean of the distribution for the Bull and
the Bear states respectively, model (4) displays the difference in posterior mean between
the two states (Bull− Bear). Models (5-7) display results for the 2-state Markov switching
model with co-movement, models (5) and (6) show the posterior mean of the distribution
for the Bull and the Bear states respectively, model (7) displays the difference in posterior
mean between the two states (Bull − Bear). All posterior values are monthly

One State Two States Two States with Comovement
1S Bull Bear Di f f Bull Bear Di f f
(1) (2) (3) (4) (5) (6) (7)

Yield Spread 4.14 3.12 4.90 -1.78 4.06 5.18 -1.13
(0.16) (0.18) (0.37) (0.40) (0.17) (0.93) (0.97)

CPI Growth 0.36 0.27 0.45 -0.18 0.35 0.52 -0.17
(0.01) (0.01) (0.03) (0.03) (0.02) (0.11) (0.12)

(Mkt− R f ) 4.51 3.41 5.94 -2.53 3.97 5.55 -1.59
(0.17) (0.18) (0.34) (0.35) (0.19) (0.99) (0.94)

SMB 3.08 2.40 4.03 -1.64 2.91 3.72 -0.82
(0.12) (0.11) (0.25) (0.24) (0.12) (0.72) (0.73)

HML 2.86 1.97 3.97 -1.99 2.68 3.79 -1.12
(0.11) (0.10) (0.24) (0.22) (0.11) (0.66) (0.66)

Standard deviations in parenthesis
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Table .6: Differences in Posterior Volatility of the Factors
This table shows differences in the posterior volatility of the distribution of the factors
for the two Markov switching models with and without comovement (MS_C−MS). The
factors considered are the same as described in Table .1. Models (1) and (2) display the
difference in the posterior volatility of the distribution for the Bull and the Bear states
respectively. Model (3) displays difference in the difference between the posterior mean of
the factors between the Bull and Bear states in the two considered models (MS_C−MS).
All posterior values are monthly

Comparison : MS_C − MS
Bull − Bull Bear− Bear [(Bull − Bear)− (Bull − Bear)]

(1) (2) (3)
Yield Spread 0.94 0.29 0.65

(0.21) (0.97) (1.03)
CPI Growth 0.07 0.07 0.01

(0.02) (0.12) (0.12)
(Mkt− R f ) 0.56 -0.39 0.95

(0.22) (1.03) (1.00)
SMB 0.51 -0.31 0.82

(0.14) (0.75) (0.77)
HML 0.70 -0.18 0.88

(0.13) (0.69) (0.70)
Standard deviations in parenthesis
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Table .7: Posterior Volatility of the Excess Return on the 10 Industry Portfolios
This table shows the posterior volatility of the distribution of the 10 Fama–French industry
portfolios. The industries considered are: Consumer NonDurables (NoDur), Consumer
Durables (Durbl), Manufacturing (Manu f ), Oil, Gas, and Coal Extraction and Products
(Enrgy), Business Equipment (HiTec), Telephone and Television Transmission (Telcm),
Wholesale, Retail, and Some Services – Laundries, Repair Shops (Shops), Healthcare (Hlth),
Utilities (Utils), Other (Other). Model (1) shows the results for the one-state model (1S).
Models (2-4) display results for the 2-state Markov switching model without co-movement,
models (2) and (3) show the posterior volatility of the distribution for the Bull and the Bear
states respectively, model (4) displays the difference in posterior volatility between the two
states (Bull − Bear). Models (5-7) display results for the 2-state Markov switching model
with co-movement, models (5) and (6) show the posterior volatility of the distribution for
the Bull and the Bear states respectively, model (7) displays the difference in posterior
volatility between the two states (Bull − Bear). All posterior values are monthly

One State Two States Two States with Comovement
1S Bull Bear Di f f Bull Bear Di f f
(1) (2) (3) (4) (5) (6) (7)

NoDur 4.41 3.64 5.53 -1.89 3.99 6.36 -2.37
(0.16) (0.18) (0.31) (0.32) (0.17) (1.25) (1.21)

Durbl 6.29 4.95 8.18 -3.23 5.77 8.58 -2.81
(0.23) (0.27) (0.50) (0.55) (0.25) (1.67) (1.64)

Manu f 5.03 3.92 6.57 -2.65 4.48 6.97 -2.48
(0.19) (0.20) (0.39) (0.40) (0.21) (1.35) (1.29)

Enrgy 5.37 4.22 6.93 -2.71 5.05 7.22 -2.17
(0.20) (0.22) (0.41) (0.42) (0.22) (1.23) (1.22)

HiTec 6.60 5.12 8.65 -3.54 5.94 7.97 -2.03
(0.25) (0.25) (0.49) (0.49) (0.26) (1.28) (1.24)

Telcm 4.72 3.91 5.85 -1.94 4.43 6.07 -1.64
(0.18) (0.20) (0.32) (0.35) (0.19) (0.92) (0.91)

Shops 5.26 4.13 6.84 -2.71 4.72 7.15 -2.43
(0.20) (0.21) (0.38) (0.38) (0.21) (1.43) (1.38)

Hlth 5.05 4.29 6.13 -1.84 4.73 6.27 -1.54
(0.19) (0.20) (0.34) (0.36) (0.19) (1.05) (1.03)

Utils 4.06 3.35 5.08 -1.73 3.87 5.73 -1.86
(0.15) (0.16) (0.29) (0.29) (0.16) (0.97) (0.96)

Other 5.36 4.16 7.00 -2.84 4.82 7.30 -2.48
(0.20) (0.22) (0.42) (0.43) (0.22) (1.46) (1.41)

Standard deviations in parenthesis
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Table .8: Differences in Posterior Volatility of the Excess Return on the 10
Industry Portfolios
This table shows differences in the posterior volatility of the distribution of the excess return
on the 10 Fama–French industry portfolios for the two Markov switching models with and
without comovement (MS_C−MS). The industries considered are the same as described
in Table .3. Models (1) and (2) display the difference in the posterior volatility of the
distribution for the Bull and the Bear states respectively. Model (3) displays difference in
the difference between the posterior distribution of the factors between the Bull and Bear
states in the two considered models (MS_C−MS). All posterior values are monthly

Comparison : MS_C − MS
Bull − Bull Bear− Bear [(Bull − Bear)− (Bull − Bear)]

(1) (2) (3)
NoDur 0.35 0.83 -0.48

(0.21) (1.27) (1.25)
Durbl 0.82 0.40 0.42

(0.31) (1.72) (1.73)
Manu f 0.56 0.39 0.17

(0.24) (1.37) (1.34)
Enrgy 0.83 0.29 0.54

(0.26) (1.26) (1.27)
HiTec 0.83 -0.68 1.51

(0.30) (1.35) (1.35)
Telcm 0.52 0.22 0.29

(0.23) (0.96) (0.97)
Shops 0.59 0.31 0.28

(0.25) (1.46) (1.43)
Hlth 0.43 0.14 0.30

(0.23) (1.07) (1.08)
Utils 0.52 0.65 -0.14

(0.19) (0.99) (0.99)
Other 0.66 0.29 0.36

(0.27) (1.49) (1.48)
Standard deviations in parenthesis
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Table .9: Posterior Mean of the Predictive Distribution of Return
This table displays the posterior mean of the predictive distribution of return for the 10
Fama–French industry portfolios. Model (1) displays the results for the one state model(1S).
Models (2) and (3) show the results for the two states models without (MS) and with co-
movement respectively (MS_C).

One State Two States
1S MS MS_C
(1) (2) (3)

NoDur 0.45 -0.01 1.11
Durbl 0.60 0.24 1.25
Manu f 0.51 -0.16 1.18
Enrgy 0.74 0.44 1.01
HiTec 0.54 -0.19 1.25
Telcm 0.38 -0.08 0.83
Shops 0.45 -0.17 1.20
Hlth 0.50 -0.26 0.91
Utils 0.07 -0.18 0.41
Other 0.44 -0.20 1.08
Standard deviations in parenthesis
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Table .10: Optimal Portfolio Weights, CER and SR
This table compares the one-period-ahead optimal portfolio weights allocated to the 10
Fama French industry portfolios using the three models of interest: one state model (Model
1 – 1S), two state model without co-movement (Model 2 – MS) and two state model with
co-movement (Model 3 – MS_C). It additionally displays for each model the certainty
equivalent of return (CER) and the Sharpe Ratio (SR) based on a $100 of investment.
Models (4) and (5) display the difference in such CER and SR for between the 1S and MS
and between the MS_C and MS models respectively.

One State Two States Comparison
1S MS MS_C (MS− 1S) (MS_C−MS)
(1) (2) (3) 4 5

NoDur 35.25 50.39 83.79
Durbl 14.37 35.16 3.41
Manu f -17.37 -52.26 22.04
Enrgy 36.52 34.70 27.28
HiTec -3.81 3.86 5.96
Telcm 8.50 -0.24 8.06
Shops -3.43 -13.18 5.04
Hlth 13.25 -10.88 -11.50
Utils -41.45 -28.11 -45.83
Other -17.69 -21.50 -29.19
CER 16.78 35.00 54.25 18.22 19.25
SR 25.76 30.31 33.27 4.55 2.96
Values computed per $100
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